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Ensemble forecast provides better, flow-dependent estimate of 
background error covariance: B = Ne
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Equivalence to 4Dvar in linear systems; no adjoint or TLM; 

fully coupled with ensemble forecast; nonlinear dynamics 

included; adaptable to be coupled/hybrid with 3D/4DVar 

Ensemble Kalman Filter for Mesoscales 
(Evensen 1994 JGR; Zhang and Snyder 2007 BAMS) 



A Simple Example 
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If T1 is the  background state with std of 1 ; T2 is the observation with std of

 2 , then the posterior analysis T and its std  will be: 
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A Multivariate Example 
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T = T1 + K (V2-V1) 
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In EnKF, Cov(T,V) is

 estimated by short-range 

ensemble and is flow

-dependent 

If T1 is unobserved but with measurements of V2 (e.g., radar radial velocity obs),

 then the posterior analysis T depends on background error covariance Cov(T,V): 



 Vertical velocity at 5km (colored) and surface cold pool (black lines, every 2K) 

Observations: radial velocity Vr only, available every 5 minutes where reflectivity Z>12dBZ 

(Snyder and Zhang 2003 MWR; Zhang et al. 2004 MWR; Dowell, Zhang et al. 2004 MWR) 

Assimilation of Doppler Radar Observations 

Truth 

EnKF 



5-km rain water mixing ratio (shaded) and relative vorticity (solid, >0; dotted,

 <0) 

(Snyder and Zhang 2003 MWR; Zhang et al. 2004 MWR; Dowell, Zhang et al. 2004 MWR) 

Truth 

EnKF 

Observations: radial velocity Vr only, available every 5 minutes where reflectivity Z>12dBZ 

Assimilation of Doppler Radar Observations 



WRF/ARW/EnKF: 40 multi-physics-scheme ensemble 

Boundary conditions:  D1 updated by 12 hourly GFS/FNL analyses  

3DVar: Updated background error covariance with May 2003 forecasts
 via NMC method (Parrish and Derber 1992; Xiao and Sun 2007)  

Observations:   Soundings every 12 h QC’d by 3Dvar in D2,     
 assuming observational errors of NCEP. 

Verification: against soundings      
 at 12-h forecast time and at      standard
 standard pressure levels  

(Zhang, Meng and Aksoy 2006;   

 Meng and Zhang 2007, 2008a,b MWR) 

Regional Scale EnKF vs. 3Dvar for June 2003 

Verification area 

(30km) 

(90km) 



EnKF vs. 3DVar: WRF/ARW 12h forecast RMSE for Jun’03 

---EnKF       --- 3DVar_WRF 

EnKF performs generally better than WRF 3DVar for the whole month of June 

(Meng and Zhang 2008b MWR) 



---  EnKF       --- 3DVar_WRF    --- ARW 12h fcst from FNL_GFS  

EnKF vs. 3DVar vs. FNL_GFS for June 2003 

EnKF performs even better than FNL_GFS which assimilates many more data including satellite 

FNL_GFS has a generally smaller 12-h forecast error than wrf-3DVar. 

(Meng and Zhang 2008b) 



Vertical Distribution of 12-h Forecast RMSE for June 2003 

---  EnKF       --- 3DVar_WRF 

Wind amplitude (m/s)                    T(K)                                     q (g/kg) 

EnKF performs clearly better than WRF-3DVar in almost every vertical level 

(Meng and Zhang 2008b) 



• EnKF has significantly smaller overall 12-h forecast error than both WRF-3DVar and FNL_GFS.  

• FNL_GFS has smaller overall forecast error than WRF-3DVar.   

Monthly Averaged 12-h-Forecast RM-DTE for June 2003 

(Meng and Zhang 2008b) 



Monthly Averaged Forecast Error at Different Lead times 

initialized from respective analyses (every 12h, 60 samples) 
—FNL_GFS     —EnKF      —3DVar_WRF       

(Meng and Zhang 2008b) 



Cases with WSR88D or  NOAA P3 airborne Vr OBS 

Assimilation of Doppler Vr OBS for Hurricanes 
Emily, Katrina, Rita’05, Humberto’07, Dolly, Fay, Gustav, Ike’08 

• TC initialization is intrinsically 
multiscale; initial vortex and 
convective details can both be 
important for intensity, structure 
and precipitation forecasts 

• Abundant WSR-88D obs for TCs 
near coasts 

• HRD collects NOAA P3 aircraft 
radar data sets and process them on 
most tropical cyclones since 1994. 

• NOAA airborne Doppler missions 
to expand for TCs    



 

Coastal Storms within WSR-88D: Hurricane Humberto (2007) 

Synopsis: first lanfalling hurricane at 

US coast since busy 2005 season; fastest 

from first NHC warning to a category 1 

hurricane; 70 million estimated property 

damage,  1 death 

MSLP 

GFS (blue) & 4.5-km WRF (red) forecast: No 

forecast initialized with GFS FNL analysis ev 6hr 

from 00Z 12 to 00Z 13 predicts rapid formation 

It becomes a hurricane 14hr after this NHC forecast. 

(Zhang et al. 2008, MWR, in review)  



KCRP 

KHGX 

KLCH 

• WRF domains: D1-D2-D3-D4 grid sizes---40.5, 13.5, 4.5, 1.5km (movable)  

– Physics: WSM 6-class microphysics; YSU PBL; Grell-Devenyi CPS 

• EnKF (Evensen 1994; Meng & Zhang 2008a,b): - 30-member ensemble 

      - Initialized at 00Z 12 using 3DVar background uncertainty with FNL 
analysis; GFS forecast used for boundary condition in forecasts  

      - Advantage: flow-dependent background error covariance from ensemble; 
flow dependent analysis uncertainty for ensemble forecasting 

• Data assimilated: 
– WSR88D at KCRP, KHGX  

 and KLCH radar radial  

    velocity every hour from 

    09Z to 21Z 12 Sept 2007 

- Data assimilation are performed 

     for all domains; obs err 3m/s 

Assimilate W88D Vr for Humberto with EnKF 

D1 



Super-Obs: QC and thinning of WSR-88D Vr Obs 

•Define SO position depended on the radial distance 

•Average10 nearest data points in the raw polar scan to create a SO 

•Averaging bin is 5km max radial range and 5° max azimuthally resolution 

•There are at least 4 valid velocity data within an averaging bin. 

•The standard deviation checking of the velocities. 

0.5degree RAW data 0.5degree SO 



Assimilate WSR88D Vr Obs: Number of SOs 

D1 

Super-Ob of KCRP and KHGX at 09Z/12 

Number of Assimilated SOs 

-WRF/EnKF starts assimilating hourly Vr obs of CRP, HGX and LCH WSR88D 

radars from 09Z/12 to 21Z/12 after a 9-h ensemble forecast from GFS/FNL analysis 

-Successive covariance localization with different ROIs for different subset of SOs 
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CNTL EnKF Analysis vs. KHGX Obs vs. NoDA  
KHGX base Vr  EnKF Analysis Mean Pure EF Mean w/o EnKF 

   

   

   

09Z/12 

18Z/12 

03Z/13 



Forecast initialized with EnKF Assimilating WSR88D Vr

Min SLP Max wind 

WRF single forecasts initialized with EnKF  analysis at 18Z or 21Z September 

12 captures well the rapid TC formation and deepening (red and brown) 

 

MinSLP (hPa) MaxWSP (m/s)



Forecast from  EnKF Analysis at 18Z/12  
Obs dBZ forecast with EnKF Pure EF Mean w/o EnKF 

3h at 21Z/12 

9h at 03Z/13 

15h at 09Z/13 

(a)                                              (b)                                            (c) 

   
(d)                                              (e)                                            (f) 

   
(g)                                              (h)                                            (i) 

   



Comparison with WRF/3DVAR Assimilating the Same OBS

Min SLP Max wind 

Without flow-dependent background error covariance, WRF/3DVAR forecast 

failed to develop the storm despite fit to the best-track obs better at 18Z 



Predictability: 1.5-km (left) vs. 4.5-km (right) 42h ensembles 

MinSLP

MaxWSP

4.5-km  1.5-km  



WRF/EnKF for Katrina with W88D Data 

160x 120 x 40.5km 

253x 253  x  13.5km 

262x253x4.5km 

• WRF domains D1-D3: 40.5, 13.5, 4.5 km ; 35 vertical levels; WSM 6-class 
microphysics; YSU PBL; Grell-Devenyi CPS 

• EnKF (Meng & Zhang 2008a,b) but with 30-member single-scheme 
ensemble; Gaspairi&Cohn 99' covariance localization but with varying RoI 

• IC & BC: FNL analysis using 3DVAR background uncertainty 

• Data assimilated: 

– TC position (err=20km) 

 and intensity (err=1hpa) D1,D2 

 every 3 h from 0Z/25 to 0Z/26 

 (Chen and Snyder 2007) 

– Doppler velocity (err=3m/s) 

 from KMAX and KBYX (D1, D2) 

 at 00Z/26 and/or 03 & 06Z 

• Forecast: 96-h single run from mean 

     analysis with D1, D2, D3 (two-way) 

     w/ D3 movable 160x 120 x 40.5km 

253x 253  x  13.5km 

262x253x4.5km 



EnKF Performance: Track forecast with Vr assimilated 

NEXRAD at KAMX and KBYZ assimilate at 00Z 26 Aug in 14.5-km D2; free forecast with 4.5-km D3 afterwards 



Airborne Doppler Radar Scanning Geometry 



Hurricane Rita (2005): Best track and 

NOAA P3 Airborne Missions 



  

15:55:56’   

1.50 degree 

elevation 

All SOs   

1.5° SOs 

Airborne Vr Super-Observations (SOs):

 Similar to W88D but more QCs 



Forecasts from EnKF with Airborne vs. NEXRAD 

WRFGFS-2100: WRF deterministic 

forecast took GFS 0000UTC Sep21 

analysis as IC and its forecast as BC; 

Airborne-20: WRF DF from the EnKF 

analysis at 1800UTC Sep20 which 

assimilated N43 Vr at 1600, 1730 and 

1800UTC Sep20;  

KBYX-20:      WRF DF from the EnKF 

analysis at 1800UTC Sep20 which 

assimilated KBYX Vr at 1600, 1700 

and 1800Z Sep20.  

Min SLP Max 10m WSP 

track 



Impacts of Airborne Vr EnKF for Katrina (2005) 

Min SLP (hPa) 

Max 10m WSP (m/s) 
Track 



4.5-km (top, 126h) vs. 1.5-km (bottom, 102h) ensemble fcsts 

MinSLP MaxWSP

4.5-km  

1.5-km  



Hurricane Emily (2005): 

WRF/ARW Forecasts 

 from GFS vs. EnKF 

Min SLP (hPa) 

MaxWSP (m/s) 

track 



TOWARDS REALTIME ASSIMILATION OF 

DOPPLER RADAR OBSERVATIONS FOR CLOUD

-RESOLVING HURRICANE PREDICTION 

Dolly, Fay, Gustav, Ike’08 

Thanks to John Gamache, our Vr superobbing procedure is now implemented on P3 in realtime 



NOAA HFIP Use of TACC Computing 

System Name:  Ranger 

Operating System:  Linux 

Number of Cores:  62,976 

Total Memory:  123TB 

Peak Performance:  579.4TFlops 

Total Disk:  1.73PB (shared) 

NOAA Allocation :  30M SUs 

 (until 1 Jan 2009) 

PI for the allocation: Frank Marks 

GOAL: 

1. Make progress on establishing operational 
value of higher resolution modeling (global 

and hurricane, including ensembles) to 
improving forecast performance.  

2. Demonstrate potential of on-demand 

computing to hurricane forecast 
operations. 

3. Inform future R&D needs for HFIP goals 
and objectives toward the development 

and implementation of next-generation 

HFS. 

4. Focus research to provide tangible benefit 

within 3 - 5 years. 



HFIP-TACC On-demand Test 
• Diverse NOAA (HRD, ESRL, NCEP/NHC, NCO, EMC)

 and university (PSU, TAMU, TACC) team established
 on-demand capability to support operational hurricane
 forecasting.  

• Built upon HFIP high-resolution test plan to use high
 resolution global (FIM at 15-km) and regional (ARW at
 1.5-km using EnKF to assimilate Doppler radar
 superobs) models to demonstrate on-demand capability.  

• NCEP model fields and Doppler radar superobs from
 NOAA P-3 aircraft flow automatically to TACC, research
 models run, output products generated for forecasters,
 and products transferred to NHC via NCO.  

• Portions of process tested during Dolly and Fay, with a
 test of complete system during Gustav and Ike. 



Towards Real-time Assimilation of

 Airborne Radar Observations with EnKF:  

Same Experimental Design as Test Cases  
WRF/ARW triply-nested domains for both EnKF analyses and free forecasts: 

 D1:  121x160x40.5km x 35 levels (similar to GFDL coarse domain) 

 D2:  121x160x13.5km x 35 levels 

 D3:  253x253x  4.5km x 35 levels (moving nest in forecast mode) 

Time performance of standard real-time WRF/ARW forecast initialized with GFS 

 Waiting time for GFS completion: 4.5 h 

 Transfer GFS analysis and forecasts from NCEP to TACC: 0.3 h 

 Initialization of WRF/ARW with GFS using WPS: 0.4 h 

 126-h WRF free forecast with 512 processors: 2.7 h 

 Total time lapse: 7.9 h (3.4 h after GFS completion, 1.5 km is 7 h after) 

Estimated real-time WRF/ARW forecast initialized assimilating airborne Vr data 

 EnKF ensemble initialized with most recent available GFS: no waiting time 

 Quality control and super-observation (SO) of Airborne data per hour: 0.3h 

 Transfer airborne ~3000 SOs from P3 to TACC: 0.2 h 

 EnKF assimilation of 1-h SOs: 0.5 h   

 126-h WRF free forecast with 512 processors: 2.7 h 

 Total time lapse: 3.7 h (1.5-km is 7 h) after Doppler observations taken  



Near-realtime Tests of Hurricane Dolly (2008) 
SOs Generated shortly after P3 mission 



Performance of Airborne Vr 

Assimilation for Dolly (2008) 

Min SLP 

Max 10m WSP 

track 



Near-realtime Tests of Hurricane Fay (2008) 

SOs Generated during P3 mission and are 

assimilated a few hours later 

ARW from GFS at 00Z/19; Vr SOs during 3-07Z/19 



Max 10-m WSP Track 



ARW from GFS at 00Z/31; Vr SOs during 9-14Z/31 

Realtime Tests of Hurricane Gustav (2008) 

SOs Generated/assimilated during P3 mission 





Realtime Tests of Hurricane Ike (2008) 

SOs Generated/assimilated during P3 mission 

ARW from GFS at 12Z/9; Vr SOs during 21-24Z/09 



Realtime ARW Performance with Vr EnKF 



Realtime: Ensemble Sensitivity to Resolution 



Concluding Remarks  
• EnKF assimilation with both the ground-based and 

airborne radar observations into cloud-resolving mesoscale 
models is promising for initializing hurricanes near 
observed intensity and for subsequent forecast 

• The impacts of airborne Vr are similar to WSR-88D Vr  

• EnKF combines data assimilation and ensemble forecast 
that provides flow-dependent analysis/forecast uncertainty 

• Real-time, on-demand, convective-resolving ensemble 
analysis and forecast experiments on NSF HPC facility 
assimilating airborne Doppler observations shows great 
promises for the future of hurricane prediction 

• WRF/ARW forecasts are surprisingly similar for the 4.5-
km and 1.5-km grid spacings; 4.5-km grid very practical 



Experimental Design Using EnKF to 

Assimilate Airborne Radar Observations:   

Towards Potential Real-time Applications  


